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Abstract. Given the spectrum of a Hamiltonian, a methodology is developed which employs the Landau-
Ginsburg theory for characterizing phase transitions in infinite systems to identify phase transition rem-
nants in finite fermion systems. As a first application of our appproach we discuss pairing in finite nuclei.

PACS. 21.10.Ma Level density – 21.10.Re Collective levels – 74.20.Rp Pairing symmetries (other than
s-wave) – 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.)

Recently, it has been pointed out that empirical ev-
idence exists for a pairing phase transition to occur in
symmetric nuclear matter at normal nuclear densities at
Tc ≈ 8 MeV [1,2]. Here the energy density and the spe-
cific heat have been obtained from a finite-temperature
extension of the semi-empirical mass formula [3]. A
Landau-Ginzburg treatment of this transition together
with a simple pairing calculation strongly suggests that
its origin is due to the existence of a paired superconduct-
ing phase at temperatures below 0.8 MeV [4]. This result
is not surprising as finite-temperature BCS calculations
in nuclear and neutron matter have suggested that such a
phase should exist [5–16].
One of the intriguing questions that arises is whether

or not a remnant of this phase transition survives in fi-
nite nuclei. Clearly, a universal feature of finite nuclei is a
significant change in the density of states at excitation en-
ergies of 10 MeV or less [17]. At lower excitation energies
the spectrum of most nuclei is sparse and dominated by a
relatively small number of collective states. With increas-
ing excitation energy, the independent particle degrees of
freedom dominate and the density of states grows expo-
nentially. As the mass number increases, the low-lying col-
lective portion of the energy spectrum becomes more com-
pressed and an abrupt change in the many-particle density
of states occurs at lower excitation energies. It has, there-
fore, been suggested that a collective–to–non-collective
phase transition occurs in finite nuclei [18]. Strictly speak-
ing it is incorrect to speak of phase transitions in finite
systems. No one can deny, however, that transitions be-
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tween different regimes do take place in these systems, and
that they are more or less abrupt. (A similar situation is
known in biophysics. The helix-coil transition in certain
biological molecules in solution occurs with temperature
width around 5 degrees [19,20].) This issue, particularly
in deformed systems, has been clouded by the fact that
finite-temperature mean-field calculations have suggested
that this phase transition is simply due to a drastic change
of shape [21]. The deformed-to-spherical shape transition
seen in these calculations is not seen in exact canonical
calculations [22–25] and may be an artifact of the finite-
temperature mean-field approximation and also depends
on the volume of the system [26,27]. In spite of the fact
that the canonical partition function above the critical
temperature is dominated by the single-particle degrees of
freedom, a few collective states still contribute and are ex-
tremely important in the calculation of shape-dependent
parameters. Recent calculations of the ensemble average
of the quadrupole moment squared Q[2] · Q[2] indicate
that it is discontinuous in the finite-temperature mean-
field approximation, while no discontinuity is observed in
the canonical calculations [28]. In both cases this quantity
does not appear to vanish at the critical temperature. It
should also be noted, however, that when thermal fluctu-
ations in the shape-dependent order parameters are taken
into account, either by macroscopic or microscopic proce-
dures, reasonable agreement with the exact canonical cal-
culations [22] is obtained. With increasing temperature,
however, it is expected that these collective degrees of
freedom will eventually completely dissolve, presumably
below the critical temperature of the liquid-to-gas phase
transition.



340 The European Physical Journal A

However, it should be noted that model studies in a
SU(2)× SU(2) system show that, in the thermodynamic
limit, this system exhibits a singularity in the specific-heat
characteristic of a true phase transition [29,30]. Further-
more, the remnant of this singularity remains in the form
of a peak in finite sytems of this type. The presence of
this peak has been used to map out the phase structure
in such a model [31].
In spite of the fact that in many microscopic varia-

tional calculations (see, for example, [32]) pairing transi-
tions appear to take place, they are difficult to identify in
exact shell model calculations [33]. Recent advances in the
shell model Monte Carlo method [34,35] have led to new
techniques for calculating the specific heat in large model
spaces [36] which exhibit a strong suppression of the effects
seen in the finite-temperature BCS results. This is due to
the large fluctuations present in finite systems which are
not accounted for in mean-field approaches. Extensions,
which can be used at higher temperatures and have been
applied in the iron region [37], appear to be able to iden-
tify a structure in the specific heat which is consistent
with the remnant of a pairing phase transition while qual-
itatively reproducing the observed higher-temperature be-
haviour [38,39].
We propose in the present work to identify the exis-

tence of a pairing transition empirically in finite nuclei
in the following manner. In the Canonical Ensemble the
partition function for a nucleus of mass A is given by

Z(A, T ) =

n
∑

i

gi exp(−βEi)

+

∫ Emax

En

dE gA,Z(E) exp(−βE) , (1)

where β = 1
T
, gi = 2ji + 1 is the spin degeneracy factor,

Ei the energy of the i-th state of the nucleus and gA,Z(E)
its level density with

gA,Z(E) =

√
π

12

exp(2
√
aU)

a
1

4U
5

4

, (2)

where U = E−P (Z)−P (N) and a = A[0.00917S+0.142]
per MeV for undeformed nuclei, or a = A[0.00917S +
0.120] per MeV for deformed nuclei. A is the mass number
and S is the spin energy. Given experiment information
about the bound states of a nucleus and an experimental
fit to its continuum level density, the partition function of
a nucleus can be determined empirically
From Z it is easy to determine as a function of T the

excitation energy

E = − ∂

∂β
lnZ (3)

and the specific heat

CV =
∂E

∂T
. (4)

A second-order phase transition such as a pairing phase
transition in an infinite system should lead to a disconti-
nuity in CV at Tc. Clearly, such behaviour is not possible

in finite sytems. Only a remnant remains in the form of
peaked structure in the specific heat. In order to ascer-
tain whether this structure is consistent with a pairing
phase transition we make use of Landau-Ginzburg the-
ory to demonstrate that a description of the condensed
or paired phase close to the critical temperature, Tc, from
information in the normal or uncondensed phase obtained
from experimental data can be accomplished. The mag-
nitude of the remnant of this discontinuity in CV is com-
pared with a simple analytical calculation for a pairing
phase transition [4] corrected for finite-size effects [40].
Landau and Ginzburg have provided a simple theory

of phase transitions which approximates the free energy
in the region around Tc and is most useful in analyzing
the thermodynamics in this region. In particular, using
only knowledge about the uncondensed phase, one is able
to make predictions about quantities in the condensed
phase, such as specific heat, magnetic susceptibility and
compressibility. Moreover, Landau-Ginzburg theory can
be derived from microscopic considerations [4].
In the Landau-Ginzburg formulation it is necessary

first to determine an expression for the free energy F(T )
in both phases. In the following the subscript 1 will re-
fer to the lower-temperature (condensed) phase, and 2 to
the higher-temperature (uncondensed or normal) phase.
In the uncondensed phase, a quadratic form for the en-
ergy, which follows from a low-temperature Fermi gas, is
used as an approximation of a normal Fermi liquid,

E2(T ) = a2 + k2T
2, (5)

where a2 and k2 are constants. From the relations for the
specific-heat terms of E and the entropy S,

CV =
∂E

∂T
= T

∂S

∂T
, (6)

one obtains the entropy in the uncondensed phase,

S2(T ) = C2 + 2k2T, (7)

where C2 is an unknown integration constant which later
cancels out of the calculation. From eqs. (5) and (7) the
free energy in the uncondensed phase is given by

F2(T ) = a2 − C2T − k2T
2. (8)

The free energy in the condensed phase is obtained from
the Landau expansion [4] for the free energy in terms of
an order parameter η which goes to zero at the transition
to the uncondensed phase. This order parameter vanishes
at a critical temperature Tc. The free energy expansion to
order η4 is

F1(T, η) = F2 +Aη2 +Bη4. (9)

Here A and B are functions of temperature and it is as-
sumed that the states with η = 0 and η 6= 0 are of different
symmetry. In this case it can be shown that the linear term
in η must be set equal to zero and if the critical point is
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Table 1. Parameters used for nuclei.

Nuclei P (Z) (MeV) P (N) (MeV) S(Z) (MeV) S(N) (MeV) a (MeV−1) Ec (MeV)
208Pb 0.83 0.38 −8.86 −3.16 6.61 6.25
88Sr 1.24 0.93 −16.41 12.88 9.65 7.14
48Ca 1.83 1.3 −12.07 12.13 6.84 10
20Ne 2.5 2.5 −0.811 5.633 6.84 17.7

also a stable point, e.g. if F1 as a function of η is a min-
imum at η = 0, then the third-order term in η should be
zero and at the critical point [4]

A = 0 , B > 0 .

The order parameter is determined by requiring the con-
densed phase to be stable below Tc (i.e. F1 should be min-
imized w.r.t. η). This leads to

F1 = F2 −
A2

4B
. (10)

Furthermore, since A is of opposite sign in the con-
densed and uncondensed phases, while B is strictly posi-
tive [4], the lowest-order expansion of A in T − Tc can be
parametrized as

A(T ) = a(T − Tc) 2
√

B(Tc). (11)

Note especially that a > 0 is an essential requirement fol-
lowing from the phase diagram [4]. Substituting for A(T ),
the free energy per nucleon near Tc is given by

F1(T ) = (a2−a2T 2
c )+(2a

2Tc−C2)T − (k2+a2)T 2, (12)

where F2 is taken from eq. (8).
From eq. (12), the energy in the condensed phase near

Tc is easily determined to be

E1(T ) = (a2 − a2T 2
c ) + (a

2 + k2)T
2 (13)

= a1 + k1T
2. (14)

Comparing this to the uncondensed phase (eq. (5)) we
note that the T -dependence is also quadratic, but has a
larger coefficient. Thus, the specific heat is discontinuous
across the phase transition, and is necessarily larger (k1 >
k2) in the condensed phase.
We now apply our theoretical results to the follow-

ing even-even nuclei, namely, 20Ne, 48Ca, 88Sr and 208Pb.
These nuclei span a large portion of the mass spectrum
and have a reasonably well-determined energy spectrum
both in terms of their energies and of the corresponding
angular-momentum assignments. For each of these nuclei,
the partition function (see eq. (1)) contains a discrete as
well as a continuum contribution.
The discrete portion of the partition function is de-

termined empirically from the measured energy levels in
each nuclei [17]. At lower excitation energies the angular-
momemtum assignment to each state in the spectrum is
generally unique. As the energy rises, predominantly near

the onset of the continuum, states occur which have an un-
certainty in the angular-momentum assignment. In such
cases, we have taken the lowest suggested value of the
angular momentum. The continuum contribution to the
partition function is given by eq. (2) and the value of the
parameters used for the even-even nuclei considered are
given in table 1.
The energy at which the continuum is to be attached to

the discrete portion of the energy spectrum is determined
via the prescription of Gilbert and Cameron [17]. This
matching point was ascertained graphically by first plot-
ting the energy as a function of the number of levels. There
are two parts in such graph, viz, the curve corresponding
to the low-energy bound states, and the curve correspond-
ing to the high-energy continuum states. The point of tan-
gency (i.e. where the slope is the same in both curves) was
then determined and selected as the matching point. They
found that this could be parameterized as follows:

Ec = Ux + Ep . (15)

In the above equation, Ec is the energy at the matching
point and Ep is the pairing energy associated with the
nucleus under consideration. Ux is an additional energy
term which is found graphically from the tangency point
(minus the pairing energy) as a function of mass number
(see Gilbert and Cameron [17]). From the graphical
results one can see that there is an upper and lower
limit to Ux, that the curves are hyperbolas, and that the
overall behaviour is a decrease in Ux with increasing A.
The range for Ux is listed below. On average,

Ux = 2.5 +
150

A
,

the upper limit is Ux = 2.7 + 200
A
, and the lower limit

is Ux = 2.1 +
120
A
. We have used the upper limit in all

our calculations, except for 208Pb as it produced the best
fit to a straight line in the uncondensed portion of the
specific heat (see figs. 1-4).
For 208Pb it is extremely difficult to determine the

density of states. It has been pointed out by Gilbert and
Cameron that not all nuclei near closed shells could be
fitted (i.e. finding the tangency point) in the aforemen-
tioned manner. For those that could be fitted, a value for
Ux was found that was much larger than the one pre-
dicted. 208Pb is such a case. One can determine Ux from
the graphical results given in Gilbert and Cameron (this
value is roughly 4.8 MeV). Adding the pairing energy to
this yields a matching point value of roughly 6.5 MeV.
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Fig. 1. Specific heat of 208Pb as a function of temperature
for the parameters given in table 1. The dashed curve is the
Landau-Ginzburg fit to the specific heat, whereas the solid
curve is the specific heat determined from the experimental
data. k1 = 10.83 and k2 = 6.75.
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Fig. 2. Specific heat of 88Sr as a function of temperature
for the parameters given in table 1. The dashed curve is the
Landau-Ginzburg fit to the specific heat, whereas the solid
curve is the specific heat determined from the experimetnal
data. k1 = 22.94 and k2 = 10.79.

We used a slightly lower value. The parameters used in
the determination of the partition function as a function
of temperature for the nuclei under consideration are given
in table 1.

For all four nuclei (see figs. 1-4), a well-defined peak is
observed in the specific heat (eq. (4)) as a function of tem-
perature and the Landau-Ginzburg fits to the specific heat
are consistent with that of a remnant of a second-order
phase transition. The discontinuity in the specific heat ex-
pected in an infinite system appears to be smoothed over
at the critical temperature due to finite-size effects. Fur-
thermore, not unexpectedly at higher tempertures above
the critical temperature, the specifc heat is linear as a
function of temperature.

Varying the values of the matching points for the four
nuclei considered gives rise to no significant change in
quantities like the critical temperature (variation of 0.01
MeV), or to the slope of the straight-line fit (in the uncon-
densed phase) to the specific heat at higher temperatures.
The numerical value of the observed peak in the specific
heat for each nucleus does vary slightly.
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Fig. 3. Specific heat of 48Ca as a function of temperature
for the parameters given in table 1. The dashed curve is the
Landau-Ginzburg fit to the specific heat, whereas the solid
curve is the specific heat determined from the experimental
data. k1 = 17.10 and k2 = 6.80.
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Fig. 4. Specific heat of 20Ne as a function of temperature
for the parameters given in table 1. The dashed curve is the
Landau-Ginzburg fit to the specific heat, whereas the solid
curve is the specific heat determined from the experimental
data. k1 = 6.53 and k2 = 3.74.

In an infinite system for a pairing phase transition,
the discontinuity in the specific heat at Tc can easily be
analytically determined [4] and is given by

Cs(Tc)− Cn(Tc)

Cn(Tc)
=

V
4mpfTc
7ζ(3)~3

V
mpfTc
3~3

(16)

=
12

7ζ(3)
(17)

= 1.43 (18)

and one can define

∆L = Cs(Tc)− Cn(Tc) (19)

= 1.43Cn(Tc) . (20)

Clearly, in order to calculate the remnant of this discon-
tinuity in C for a nucleus, this result should be corrected
for finite-size effects. A simple way of modeling this is
to assume that the equilibrated system is contained in a
finite-sized volume. The sum over the momentum states
in quantities like the partition function can be approxi-
mated then by an integral over the density of states in the
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form [40,41]

Σp →
∫

V

2π2~3
p2dp± S

8π~2
pdp+

L

8π~
dp , (21)

where S and L are the surface area and linear dimension of
the system of volume V . The± correspond to either choos-
ing Dirchlet (−) or von Neumann (+) boundary condi-
tions. In the following we shall use Dirchlet boundary con-
ditions and neglect the contribution from the linear term.
From Liftshitz and Pitaeevskii [4] it easy to see that

there is no change in the numerator of eqs. (16) and (17)
when finite-size effects are included and that only the sur-
face term must be taken into account in the calculation of
Cn in the denominator. The surface contribution to Cn is
given by

C
surf
n =

∂Esurfn

∂T
, (22)

where

E
surf
n = − 2S

8π~2

∫ p2

2mpdp

z−1 exp
βp2

2m +1
(23)

= −2SmT 2

8π~2

∫

xdx

z−1 expx+1
(24)

= −2SmT 2

8π~2
F2(z) (25)

= −2SmT 2

8π~2

ε2f

2T 2



1 +
2π2

6
ε2
f

T 2

. . .



 (26)

where εf is the Fermi energy z = eβµ is the fugacity and
F2(z) is the well-known Fermi-Dirac integral [40]. From
this it follows that the surface contribution to the specific
heat for finite nuclei is given by

C
surf
n ≈ −V mpfT

3~3

[

Sπ~

4V pf
. . .

]

(27)

and that

Cfinites (Tc)− Cfiniten (Tc)

Cfiniten (Tc)
≈

V
4mpfTc
7ζ(3)~3

V
mpfTc
3~3

[

1− S~

V pf

] (28)

=
1.43

[

1− Sπ~

4V pf

] (29)

and in same manner one can define

∆finite
L = C

finite
s (Tc)− C

finite
n (Tc) (30)

=
1.43

[

1− Sπ~

4V pf

]C
finite
n (Tc). (31)

Here the Fermi momentum, pf , for a nucleus with A nu-
cleons is determined from

A =
8πp3f
3(2π~)3

, (32)

Table 2. The values of the discontinuity in the specific heat
at Tc.

Nuclei ∆ ∆L ∆
finite

L Tc (MeV)
208Pb 7.15 10.22 10.27 0.66
88Sr 22.67 14.81 14.92 0.72
48Ca 21.59 18.02 18.27 1.0
20Ne 12.95 20.88 21.46 2.11

and for simplicity V = 4πR3

3 and S = 4πR2, where

R = r0A
1

3 .
After the Landau-Ginburg fits to the empirical values

of the specific heat have been obtained (see figs. 1-4), it is
easy to determine the value of the remnant of the disconti-
nuity (hereafter we shall refer to this as the discontinuity)
in the specific heat at Tc for each of the nuclei (see table 2).
As one goes to heavier nuclei, Tc falls off hyperbolically
and reaches for 208Pb a value which is slightly less than
that in symmetric nuclear matter [2]. If one now assumes
that this discontinuity is due to the remnant of a pair-
ing phase transition, its value with(∆finite

L ) and without
finite-size corrections (∆L) can easily be obtained from
eqs. (31) and (20). In spite of the simplicity of the pairing
calculation (the density of states and the pairing interac-
tion are assumed to be constant) and the difficulties with
the continuum contribution (for 208Pb) the value of the
discontinuity calculated with or without finite-size correc-
tions is in reasonable agreement with the empirical value
for the three heavier nuclei. Note that in the heavier nuclei
the finite-size corrections are not large. The discrepancy in
all cases is less than ≈ 40%. Only in the case of 20Ne is the
discrepancy about 60%, more than 1.5 the value for heav-
ier nuclei. This strongly suggests the existence of a pair-
ing transition in the heavier nuclei which is not present in
20Ne. In the latter case this is evidence for a second-order
transition which probably is shape related [21].
From the spectra of four even-even nuclei 20Ne, 48Ca,

88Sr and 208Pb we have empirically constructed in the
Canonical Ensemble their partiton functions from avail-
able experimental data and determined their specific heat
as a function of temperature. For each of the nuclei, the
specific heat displays a prominent peak which may be the
remnant of a phase transition. A Landau-Ginzburg treat-
ment shows unambiguously that this interpretation is not
inconsistent if the phase transition is second order. A sim-
ple pairing calculation of the magnitude of the observed
discontinuity is consistent with that obtained empirically
for the three heavier nuclei. This suggests that a pairing
transition takes place in these nuclei. In the case of 20Ne
such is not the case and the transition may be shape re-
lated.
Lastly, we wish to point out that the methodology

that we have employed here can be used for any finite
fermion system. Given the exact spectrum of the system,
the Landau-Ginsburg method can be utilized to identify
the existence of the remnant of a phase transition. In cases
such as pairing phase transitions, simple analytical calcu-
lations can be used to identify the nature of the phase
transition.
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